An investigation of the effects of hard and soft errors on graphics processing unit-accelerated molecular dynamics simulations
نویسندگان
چکیده
Molecular dynamics (MD) simulations rely on the accurate evaluation and integration of Newton’s equations of motion to propagate the positions of atoms in proteins during a simulation. As such, one can expect them to be sensitive to any form of numerical error that may occur during a simulation. Increasingly graphics processing units (GPUs) are being used to accelerate MD simulations. Current GPU architectures designed for high performance computing applications support error-correcting codes (ECC) that detect and correct single bit-flip soft error events in GPU memory; however, this error checking carries a penalty in terms of simulation speed. ECC is also a major distinguishing feature between high performance computing NVIDIA Tesla cards and the considerably more cost-effective NVIDIA GeForce gaming cards. An argument often put forward for not using GeForce cards is that the results are unreliable because of the lack of ECC. In an initial attempt to quantify these concerns, an investigation of the reproducibility of GPU-accelerated MD simulations using the AMBER software was conducted on the XSEDE supercomputer Keeneland, a cluster at Los Alamos National Laboratory, and a cluster at the San Diego Supercomputer Center. While the data collected are insufficient to make solid conclusions and more extensive testing is needed to provide quantitative statistics, the absence of ECC events and lack of any silent errors in all the simulations conducted to date suggest that these errors are exceedingly rare and as such the time and memory penalty of ECC may outweigh the utility of error checking functionality. However, a considerable amount of error originating from defective hardware was observed, which suggests that rigorous acceptance testing should be performed on new GPU-based systems by repeatedly running reproducible yet realistic calculations. Copyright © 2014 John Wiley & Sons, Ltd.
منابع مشابه
Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
متن کاملMolecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes
Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...
متن کاملAccelerating molecular modeling applications with graphics processors
Molecular mechanics simulations offer a computational approach to study the behavior of biomolecules at atomic detail, but such simulations are limited in size and timescale by the available computing resources. State-of-the-art graphics processing units (GPUs) can perform over 500 billion arithmetic operations per second, a tremendous computational resource that can now be utilized for general...
متن کاملOn the Use of Graphics Processing Units (GPUs) for Molecular Dynamics Simulation of Spherical Particles
General-purpose computation on Graphics Processing Units (GPU) on personal computers has recently become an attractive alternative to parallel computing on clusters and supercomputers. We present the GPU-implementation of an accurate molecular dynamics algorithm for a system of spheres. The new hybrid CPU-GPU implementation takes into account all the degrees of freedom, including the quaternion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Concurrency and Computation: Practice and Experience
دوره 26 شماره
صفحات -
تاریخ انتشار 2014